Mercurial > repo
view interps/cfunge/cfunge-src/src/fingerprints/3DSP/3DSP.c @ 12518:2d8fe55c6e65 draft default tip
<int-e> learn The password of the month is release incident pilot.
author | HackEso <hackeso@esolangs.org> |
---|---|
date | Sun, 03 Nov 2024 00:31:02 +0000 |
parents | 859f9b4339e6 |
children |
line wrap: on
line source
/* -*- mode: C; coding: utf-8; tab-width: 4; indent-tabs-mode: t; c-basic-offset: 4 -*- * * cfunge - A standard-conforming Befunge93/98/109 interpreter in C. * Copyright (C) 2008-2009 Arvid Norlander <anmaster AT tele2 DOT se> * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at the proxy's option) any later version. Arvid Norlander is a * proxy who can decide which future versions of the GNU General Public * License can be used. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include "3DSP.h" #if !defined(CFUN_NO_FLOATS) #include "../../stack.h" #include <math.h> // Yeah, some systems are *really* crap. // This includes Mingw on windows when I tried. #ifndef M_PI # define M_PI 3.14159265358979323846 #endif // This is based on the CCBI 3DSP fingerprint code. /// An union for float and 32-bit int. typedef union u_floatint { float f; int32_t i; } floatint; /******************** * Helper functions * ********************/ FUNGE_ATTR_FAST static inline float pop_float(instructionPointer * restrict ip) { floatint u; u.i = (int32_t)stack_pop(ip->stack); return u.f; } FUNGE_ATTR_FAST static inline void push_float(instructionPointer * restrict ip, float f) { floatint u; u.f = f; stack_push(ip->stack, u.i); } FUNGE_ATTR_FAST static inline void pop_vec_float(instructionPointer * restrict ip, float vec[restrict 3]) { vec[2] = pop_float(ip); vec[1] = pop_float(ip); vec[0] = pop_float(ip); } FUNGE_ATTR_FAST static inline void push_vec_float(instructionPointer * restrict ip, const float vec[restrict 3]) { push_float(ip, vec[0]); push_float(ip, vec[1]); push_float(ip, vec[2]); } FUNGE_ATTR_FAST static inline void pop_vec(instructionPointer * restrict ip, double vec[restrict 3]) { vec[2] = pop_float(ip); vec[1] = pop_float(ip); vec[0] = pop_float(ip); } FUNGE_ATTR_FAST static inline void push_vec(instructionPointer * restrict ip, const double vec[restrict 3]) { push_float(ip, (float)vec[0]); push_float(ip, (float)vec[1]); push_float(ip, (float)vec[2]); } FUNGE_ATTR_FAST static inline double vector_length(const double vec[restrict 3]) { return sqrt(vec[0]*vec[0] + vec[1]*vec[1] + vec[2]*vec[2]); } FUNGE_ATTR_FAST static inline void writeMatrix(const instructionPointer * restrict ip, const funge_vector * restrict fV, const double m[restrict 16]) { const funge_cell basex = fV->x + ip->storageOffset.x; const funge_cell basey = fV->y + ip->storageOffset.y; for (funge_cell y = 0; y < 4; ++y) { for (funge_cell x = 0; x < 4; ++x) { floatint u; u.f = (float)m[4*y + x]; fungespace_set(u.i, vector_create_ref(basex + x, basey + y)); } } } FUNGE_ATTR_FAST static inline void readMatrix(const instructionPointer * restrict ip, const funge_vector * restrict fV, double m[restrict 16]) { const funge_cell basex = fV->x + ip->storageOffset.x; const funge_cell basey = fV->y + ip->storageOffset.y; for (funge_cell y = 0; y < 4; ++y) { for (funge_cell x = 0; x < 4; ++x) { floatint u; u.i = (int32_t)fungespace_get(vector_create_ref(basex + x, basey + y)); m[y*4 + x] = u.f; } } } FUNGE_ATTR_FAST static inline void mulMatrixVector(const double m[restrict 16], const double v[restrict 4], double r[restrict 4]) { for (size_t i = 0; i < 4; ++i) { double n = 0; for (size_t k = 0; k < 4; ++k) n += m[i*4 + k] * v[k]; r[i] = n; } } FUNGE_ATTR_FAST static inline void mulMatrices(const double a[restrict 16], const double b[restrict 16], double r[restrict 16]) { for (size_t y = 0; y < 4; ++y) { for (size_t x = 0; x < 4; ++x) { double n = 0; for (size_t k = 0; k < 4; ++k) n += a[y*4 + k] * b[k*4 + x]; r[y*4 + x] = n; } } } /**************************** * Fingerprint instructions * ****************************/ /// A - Add two 3d vectors static void finger_3DSP_add(instructionPointer * ip) { double a[3], b[3]; pop_vec(ip, b); pop_vec(ip, a); a[0] += b[0]; a[1] += b[1]; a[2] += b[2]; push_vec(ip, a); } /// B - Subtract two 3d vectors static void finger_3DSP_sub(instructionPointer * ip) { double a[3], b[3]; pop_vec(ip, b); pop_vec(ip, a); a[0] -= b[0]; a[1] -= b[1]; a[2] -= b[2]; push_vec(ip, a); } /// C - Cross porduct of two vectors static void finger_3DSP_cross(instructionPointer * ip) { double a[3], b[3], c[3]; pop_vec(ip, b); pop_vec(ip, a); c[0] = a[1] * b[2] - a[2] * b[1]; c[1] = a[2] * b[0] - a[0] * b[2]; c[2] = a[0] * b[1] - a[1] * b[0]; push_vec(ip, c); } /// D - Dot product of two vector static void finger_3DSP_dot(instructionPointer * ip) { double a[3], b[3]; pop_vec(ip, b); pop_vec(ip, a); a[0] *= b[0]; a[1] *= b[1]; a[2] *= b[2]; push_float(ip, (float)(a[0] + a[1] + a[2])); } /// L - Length of vector static void finger_3DSP_length(instructionPointer * ip) { double a[3]; pop_vec(ip, a); push_float(ip, (float)vector_length(a)); } /// M - Multiply two 3d vectors static void finger_3DSP_mul(instructionPointer * ip) { double a[3], b[3]; pop_vec(ip, b); pop_vec(ip, a); a[0] *= b[0]; a[1] *= b[1]; a[2] *= b[2]; push_vec(ip, a); } /// N - Normalize vector (sets length to 1) static void finger_3DSP_normalise(instructionPointer * ip) { double a[3]; double len; pop_vec(ip, a); len = vector_length(a); a[0] /= len; a[1] /= len; a[2] /= len; push_vec(ip, a); } /// P - Copy a matrix static void finger_3DSP_matrix_copy(instructionPointer * ip) { funge_vector fs, ft; fs = stack_pop_vector(ip->stack); ft = stack_pop_vector(ip->stack); // Add in storage offset fs.x += ip->storageOffset.x; fs.y += ip->storageOffset.y; ft.x += ip->storageOffset.x; ft.y += ip->storageOffset.y; for (funge_cell y = 0; y < 4; ++y) for (funge_cell x = 0; x < 4; ++x) { fungespace_set(fungespace_get(vector_create_ref(fs.x + x, fs.y + y)), vector_create_ref(ft.x + x, ft.y + y)); } } /// R - Generate a rotation matrix static void finger_3DSP_matrix_rotate(instructionPointer * ip) { double s, c; double angle = pop_float(ip); funge_cell axis = stack_pop(ip->stack); funge_vector fV = stack_pop_vector(ip->stack); if (!(axis >= 1 && axis <= 3)) { ip_reverse(ip); return; } angle *= M_PI / 180; s = sin(angle); c = cos(angle); switch (axis) { case 1: { double m[16] = { 1, 0, 0, 0 , 0, c,-s, 0 , 0, s, c, 0 , 0, 0, 0, 1}; writeMatrix(ip, &fV, m); break; } case 2: { double m[16] = { c, 0, s, 0 , 0, 1, 0, 0 ,-s, 0, c, 0 , 0, 0, 0, 1}; writeMatrix(ip, &fV, m); break; } case 3: { double m[16] = { c,-s, 0, 0 , s, c, 0, 0 , 0, 0, 1, 0 , 0, 0, 0, 1}; writeMatrix(ip, &fV, m); break; } } } /// S - Generate a scale matrix static void finger_3DSP_matrix_scale(instructionPointer * ip) { double v[3]; funge_vector fV; pop_vec(ip, v); fV = stack_pop_vector(ip->stack); { double matrix[16] = {v[0], 0, 0, 0 , 0,v[1], 0, 0 , 0, 0,v[2], 0 , 0, 0, 0, 1}; writeMatrix(ip, &fV, matrix); } } /// T - Generate a translation matrix static void finger_3DSP_matrix_translate(instructionPointer * ip) { double v[3]; funge_vector fV; pop_vec(ip, v); fV = stack_pop_vector(ip->stack); { double matrix[16] = { 1, 0, 0, v[0] , 0, 1, 0, v[1] , 0, 0, 1, v[2] , 0, 0, 0, 1}; writeMatrix(ip, &fV, matrix); } } /// U - Duplicate vector on top of stack static void finger_3DSP_duplicate(instructionPointer * ip) { float a[3]; pop_vec_float(ip, a); push_vec_float(ip, a); push_vec_float(ip, a); } /// V - Map 3d point to 2d view static void finger_3DSP_map(instructionPointer * ip) { double v[3]; pop_vec(ip, v); // Use fpclassify() to avoid: // "warning: comparing floating point with == or != is unsafe". #ifdef FP_ZERO if (fpclassify(v[2]) != FP_ZERO) #else if (v[2] != 0) #endif { v[0] /= v[2]; v[1] /= v[2]; v[2] /= v[2]; } push_float(ip, (float)v[0]); push_float(ip, (float)v[1]); } /// X - Transform a vector using transformation matrix static void finger_3DSP_transform(instructionPointer * ip) { funge_vector fm; double v[4]; double m[16]; double r[4]; fm = stack_pop_vector(ip->stack); pop_vec(ip, v); v[3] = 1; readMatrix(ip, &fm, m); mulMatrixVector(m, v, r); push_vec(ip, r); } /// Y - Multiply two matrices static void finger_3DSP_matrix_mul(instructionPointer * ip) { funge_vector ft, fa, fb; double a[16], b[16], r[16]; fb = stack_pop_vector(ip->stack); fa = stack_pop_vector(ip->stack); ft = stack_pop_vector(ip->stack); readMatrix(ip, &fb, b); readMatrix(ip, &fa, a); mulMatrices(b, a, r); writeMatrix(ip, &ft, r); } /// Z - Scale a vector static void finger_3DSP_scale(instructionPointer * ip) { double a[3]; double n; pop_vec(ip, a); n = pop_float(ip); a[0] *= n; a[1] *= n; a[2] *= n; push_vec(ip, a); } bool finger_3DSP_load(instructionPointer * ip) { manager_add_opcode(3DSP, 'A', add) manager_add_opcode(3DSP, 'B', sub) manager_add_opcode(3DSP, 'C', cross) manager_add_opcode(3DSP, 'D', dot) manager_add_opcode(3DSP, 'L', length) manager_add_opcode(3DSP, 'M', mul) manager_add_opcode(3DSP, 'N', normalise) manager_add_opcode(3DSP, 'P', matrix_copy) manager_add_opcode(3DSP, 'R', matrix_rotate) manager_add_opcode(3DSP, 'S', matrix_scale) manager_add_opcode(3DSP, 'T', matrix_translate) manager_add_opcode(3DSP, 'U', duplicate) manager_add_opcode(3DSP, 'V', map) manager_add_opcode(3DSP, 'X', transform) manager_add_opcode(3DSP, 'Y', matrix_mul) manager_add_opcode(3DSP, 'Z', scale) return true; } #endif /* !defined(CFUN_NO_FLOATS) */